Numerical ranges of restricted shifts and unitary dilations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraint Unitary Dilations and Numerical Ranges

It is shown that each contraction A on a Hilbert space H, with A + A I for some 2 R, has a unitary dilation U on H H satisfying U + U I. This is used to settle a conjecture of Halmos in the aarmative: The closure of the numerical range of each contraction A is the intersection of the closures of the numerical ranges of all unitary dilations of A. By means of the duality theory of completely pos...

متن کامل

Higher-rank Numerical Ranges and Dilations

For any n-by-n complex matrix A and any k, 1 ≤ k ≤ n, let Λk(A) = {λ ∈ C : X∗AX = λIk for some n-by-k X satisfying X∗X = Ik} be its rank-k numerical range. It is shown that if A is an n-by-n contraction, then Λk(A) = ∩{Λk(U) : U is an (n + dA)-by-(n + dA) unitary dilation of A}, where dA = rank (In − A∗A). This extends and refines previous results of Choi and Li on constrained unitary dilations...

متن کامل

Krein Space Numerical Ranges: Compressions and Dilations

A criterion for the numerical range of a linear operator acting in a Krein space to be a two-component hyperbolical disc is given, using the concept of support function. A characterization of the Krein space numerical range as a union of hyperbolical discs is obtained by a reduction to the two-dimensional case. We revisit a famous result of Ando concerning the inclusion relation W (A) ⊆ W (B) o...

متن کامل

Higher–rank Numerical Ranges of Unitary and Normal Matrices

We verify a conjecture on the structure of higher-rank numerical ranges for a wide class of unitary and normal matrices. Using analytic and geometric techniques, we show precisely how the higher-rank numerical ranges for a generic unitary matrix are given by complex polygons determined by the spectral structure of the matrix. We discuss applications of the results to quantum error correction, s...

متن کامل

Matrices with Circular Symmetry on Their Unitary Orbits and C-numerical Ranges

We give equivalent characterizations for those n x n complex matrices A whose unitary orbits %?(A) and C-numerical ranges WC{A) satisfy ei8&(A) = f/(A) or e'e WC(A) = WC(A) for some real 0 (or for all real 0 ). In particular, we show that they are the block-cyclic or block-shift operators. Some of these results are extended to infinite-dimensional Hubert spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2009

ISSN: 1846-3886

DOI: 10.7153/oam-03-17